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Binless normalization of Hi-C data provides
significant interaction and difference detection
independent of resolution
Yannick G. Spill1,2, David Castillo1,2, Enrique Vidal1,2 & Marc A. Marti-Renom 1,2,3,4

Chromosome conformation capture techniques, such as Hi-C, are fundamental in char-

acterizing genome organization. These methods have revealed several genomic features,

such as chromatin loops, whose disruption can have dramatic effects in gene regulation.

Unfortunately, their detection is difficult; current methods require that the users choose the

resolution of interaction maps based on dataset quality and sequencing depth. Here, we

introduce Binless, a resolution-agnostic method that adapts to the quality and quantity of

available data, to detect both interactions and differences. Binless relies on an alternate

representation of Hi-C data, which leads to a more detailed classification of paired-end reads.

Using a large-scale benchmark, we demonstrate that Binless is able to call interactions with

higher reproducibility than other existing methods. Binless, which is freely available, can thus

reliably be used to identify chromatin loops as well as for differential analysis of chromatin

interaction maps.
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S ince the invention of chromosome conformation capture
(3C) experiments1, our perception of the genome has
become that of a structured but highly dynamic polymer2.

In particular, Hi-C experiments3 made it possible to quantify the
frequency of contact between any two locations in the genome.
We now know that the mammalian genome is organized into
compartments which, in turn, are partitioned into topologically
associated domains (TADs) that hold groups of genes. More
recently, a series of Hi-C experiments with great sequencing
depth revealed that, at the smallest scale, chromatin loops can
form mainly between gene promoters and their enhancers or
between CTCF bound loci4. Yet while it might at first seem that
the detection of such events is a mere consequence of better
experiments and increased sequencing efforts, the computational
tools to detect them proved to be crucial. Indeed, the size, noise,
and complexity of 3C-like experiments raised completely new
research questions for statisticians and computer scientists. As a
result, numerous methods have been developed to computa-
tionally analyze the results of 3C-like experiments5.

Genome interaction matrices derived from Hi-C experiments3

usually show strong systematic biases along both counter-
diagonals and rows or columns. It is, therefore, customary to
remove these biases through normalization procedures6–15. Two
types of strategies exist to normalize Hi-C data, as was recently
reviewed13. First, explicit methods assume that all biases affecting
Hi-C data are known and can be provided as input to the nor-
malization software; for example, HiCNorm6 requires three
genomic tracks for GC content, mappability, and fragment
length. Second, implicit methods make the theoretical assumption
of equal visibility for all loci7. They then deduce the biases that
must be subtracted to recover normalized Hi-C matrices. Both
approaches, however, depend not only the quality of the data but
also on the quantity of sequencing reads that determines the
genomic resolution to which interaction matrices will be nor-
malized. This step is crucial, as genomic features such as
TADs16,17 or chromatin loops4 are detected from normalized
matrices. Unfortunately, there is no algorithm that is best for all
analyses such as normalization, TAD or loop calling. A recent

review18 concluded that TAD detection is consistent across a
broad range of algorithms but it differs mainly when TADs are
nested, because different algorithms will choose different levels of
nesting. Loop calling is, however, very inconsistent across
methods, none of which stands out to be better than the others.
Importantly, it was found that called interactions are poorly
reproducible across technical or biological replicates. Overall, it is
still best to perform redundant analyses with several methods
to conclude the validity of a set of detected interactions.

To address these limitations, we introduce Binless, a method
to normalize Hi-C data in a robust, resolution-independent
and statistically significant way (see graphical overview in Fig. 1).
Binless uses the negative binomial regression framework that
proved valid in HiCNorm6 and oneD19 but estimates the genomic
biases using only the input Hi-C data. To adapt to the size of the
features present in the data, Binless uses the fused lasso algorithm
originally implemented for image analysis. We show that the
resulting normalized matrices by Binless, in addition to being
visually simpler than regular Hi-C maps, allow for improved and
reproducible interaction and difference detection.

Results
Binless rationale. Detectable 3D genomic features have no spe-
cific resolution. For example, for mammalian genomes, com-
partments are of several megabases (Mb) in size (detected from
matrices of ~100 kb resolution), TADs are of about 1Mb in size
(detected from matrices between 20 and 50 kb resolution), and
chromatin loops are a few kb (detected from matrices of reso-
lutions higher than 5 kb). In fact, algorithms to detect genomic
compartments, TADs and loops are sensitive to the resolution
of the input data18. Therefore, ideally the detection of any 3D
genomic feature (including those yet to be discovered) needs to be
done with bin-less interaction matrices, in which the data is fused
in cells of varying resolution adapted to the features of interest.
Binless aims to accomplish this by iteratively normalizing,
smoothing, and fusing the data. The following sections describe
the working principle of Binless.

Raw

Biases

Decay

Signal

Binless
=

–

Binless difference

Fig. 1Main estimates computed by Binless. From the raw data, Binless estimates genomic and decay biases, as well as an additional signal (example on the
TBX3 locus, see Sup. Fig. 9). This binless signal matrix reports contributions that are significantly different from what can be expected from genomic and
decay biases alone. Its unit is a minimum fold change with respect to the background. Any thresholding operation should be performed on this matrix. The
binless matrix is the combination of signal and decay estimates, and is useful for visualization. If another dataset was normalized simultaneously, a binless
difference matrix can be computed. Similar to the binless signal matrix, its unit is a minimum fold change from one dataset to another. Only differences
which cannot be imputed to noise alone are reported
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Working principle. Prior to normalization, Binless estimates a
series of biases which correspond to the background model
against which the raw data will be normalized. Three of such
biases form the core of the procedure (Fig. 1 and Supplementary
Fig. 1). First, genomic biases are estimated to model the varying
coverage of the experiment across the genome and are modeled as
a smooth function that depends on the genomic position. Second,
the diagonal decay is estimated to capture the decrease in average
interaction frequency as loci separate in sequence, which
smoothly decreases as the distance between the interacting loci
increases. And third, the residual signal is estimated to detect
local features, such as TADs and loops. It is important to note
that the signal is also resolution-independent. To estimate it,
Binless corrected data by the genomic and decay biases is col-
lected at a very high resolution, which needs to be smaller than
the smallest detectable feature. Next, the fused lasso algorithm20

fuses neighboring pixels if they have a similar signal. The fused
lasso algorithm is an alternative approach to other neighborhood
filtering approaches21,22, for which highly efficient implementa-
tions are available23. The resulting signal matrix (Fig. 1 and
Supplementary Fig. 2A) is a collection of patches of varying sizes
and shapes.

Next, to correct the input interaction matrix, Binless uses an in
iterative correction similar to ICE7, but with no assumption of
equal visibility for all loci. In fact, it uses a negative binomial
count regression framework, similar to HiCNorm6 or oneD19,
which allows row and column sums of a Hi-C matrix to deviate
from a reference value. Note that Binless models the accumula-
tion of all local genomic biases in a non-parametric way by not
regressing against external data such as GC content or
mappability but by building on a popular class of regression
models, called Generalized Additive Models24,25. Binless uses a
negative binomial likelihood, a common choice for Hi-C6,19,26, as
confirmed by recent experiments on Syn-HiC27. The genomic
and decay biases are estimated using p-splines28, whose
smoothness adjusts to the quantity of data, and therefore is less
prone to over- or under-fitting. The use of smoothing splines is
justified when normalizing sparse Hi-C datasets, especially if
4 letter cutters are used since the number of possible contacts is
so large that even very dense datasets, such as the kilobase-
resolution datasets of Rao et al.4, only accumulate about 1 contact
every 10 cut site intersections (Supplementary Fig. 3). To ensure
proper normalization and to avoid overfitting, it is therefore
essential to share information spatially, which is what Generalized
Additive Models were designed for. To show this feature in the
Hi-C context, we took different sub-samplings of the SELP locus.
Generalized Additive Model ensured that biases stay as smooth as
possible (Supplementary Fig. 4).

Binless is also robust to sequencing depth as it does not over fit.
To test these features, we normalized the human chromosome 22
using various amounts of data, ranging from 1 to 100% of the
combination of 7 IMR90 replicates of Rao et al.4 (Supplementary
Fig. 5). When more data is added, features start to be visible in the
raw data. Binless retains these features only when it can be
excluded that they are caused by noise fluctuations. Then, TADs
and loops are detected simultaneously. At no moment does
Binless follow all the fluctuations in the data, because the
statistical formulation uses Generalized Additive Models20,24,
which prevents it. The same observations hold for the genomic
and decay biases (Supplementary Fig. 4).

Benchmark. Do binless matrices result in more reproducible Hi-
C analysis? In line with a recent analysis of several Hi-C nor-
malization methods18, we analyzed 41 different Hi-C datasets of
varying sequencing depths, restriction enzymes, cell types and

organisms (Supplementary Data 1). We compared Binless to
other methods by computing several metrics on selected pairs of
datasets (Methods). The stratified correlation coefficient (SCC)29

was highest with Binless, and remained high even at 5 kb reso-
lution when comparing biological replicates (Fig. 2). Methods
that do not rely on smoothing, such as ICE7 or oneD19, were able
to better reproduce datasets at 100 kb resolution, compared to
raw data. However, reproducibility degraded for matrices at
higher resolutions. In contrast, methods relying on the fused lasso
(Binless and HiCRep29 lasso modification30 used in HiC-bench31,
hereafter named HiCRep) showed a marked improvement at all
resolutions. For Binless, the median SCC was larger than 0.98 at
all resolutions. Reproducibility was also high across restriction
enzymes (Supplementary Fig. 6B) with a median SCC larger than
0.97 at all resolutions. Other metrics and comparison types
showed similar trends (Supplementary Fig. 6C–K), suggesting
that Binless increased the reproducibility of Hi-C analysis.

Do binless matrices result in improved interaction detection
from Hi-C matrices? Using the benchmark described above, we
next examined the number of true positives detected by Binless
and other methods (Fig. 3 and Methods). At 5 kb resolution,
Binless recalled 10% of all annotated true positives on average.
The second-best method only recalled 0.8% on average. This
significant improvement in sensitivity was achieved while
maintaining the false positive rate below 2.5% on average
(Supplementary Fig. 7 and Supplementary Fig. 8 for side-by-
side examples). The results, thus, indicate that Binless achieved
high specificity in our benchmark.

Can binless matrices be used to detect differences between two
Hi-C experiments? Using the just described benchmark, we next
computed the sum of all significant differences between either
technical replicates, or different cell type experiments (Fig. 4).
Binless detected higher number of differences between experi-
ments from different cell types than between technical replicates,
even at high resolution (Wilcoxon one-sided p < 10−14). The
resulting differential matrices provide a clear and quantitative
representation of changes between two experiments (Fig. 5 and
Supplementary Fig. 9).

Alternate representation and classification. The origin of Bin-
less stemmed from representing Hi-C data at very high resolu-
tion, which resulted in interesting patterns. For example, the Hi-C
map of the Caulobacter crescentus genome32 at 100 base-pair
resolution shows highly dense square patterns at the junction of
two restriction sites (Fig. 6c). These patterns prompted us to
introduce an alternate representation of Hi-C data (Fig. 6d). In
this representation, each read was displayed as an arrow in the 2D
plane. Projecting the arrow onto the diagonal along the x or y
axis, we could retrieve the start, end and orientation of each of the
two mapped read pairs in an interaction (Fig. 6b). Contrary to
representing Hi-C data as a matrix of read counts at a given
resolution, this base-resolution representation gave insight into
the way paired-end reads align around each cut site. This also
prompted us to classify each of the interactions (or arrows in the
alternate representation) into two large categories, according to
whether they gather in the immediate vicinity of the diagonal or
not (Fig. 6d). First, arrows that were far from the diagonal cor-
respond to read pairs with successful re-ligation (or, rarely,
mapping errors). They could be further subdivided into four
contact categories: “Up” contacts, which are upstream of the cut-
site intersection; “Down” contacts, which are downstream of the
cut-site intersection; “Close” contacts, which are closer from the
diagonal than the cut-site intersection; and “Far” contacts, which
are further from the diagonal than the cut-site intersection. Sec-
ond, arrows that clustered close to the diagonal corresponded to
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read pairs in which ligation events were unsuccessful, or which
resulted in the re-ligation of the same piece of DNA that was just
cut. Depending on their position and orientation relative to a
nearby cut site, a classification was proposed (Fig. 6a and Sup-
plementary Fig. 10). For example, the so-called dangling reads
(that is, reads containing fragments of DNA that were digested
but not re-ligated) were arrows that stack along the coordinates of
a cut site. This classification allowed computing two key Hi-C
quality diagnostics that serve as input to the next steps in Binless.
First, the distribution of sonication fragment lengths was gathered
from reads close to the diagonal (Supplementary Fig. 11A), which
were used to detect problems during the sonication step of the
Hi-C protocol. Second, the precise starting points of the dangling
ends was also gathered (Supplementary Fig. 11B), as they are
specific of each restriction enzyme. Spurious peaks in these
plots could be indicative of DNA degradation, or problems dur-
ing data processing. Additionally, this representation allowed
also to detect contacts between sites closer than 1 kb in sequence,
which cannot be modeled by Binless, and as such can be removed
beforehand (Supplementary Fig. 11C).

Finally, it is important to note that this alternate representation
also allowed us to assess some of the biases to be removed during
the normalization procedure. For example, in a Hi-C experiment,
it is expected that the number of dangling reads drops with

increased efficiency of ligation at a particular cut site. The
proportion of the different types of dangling reads correlates with
such biases and, as such, can be used during normalization
(Fig. 6d). In fact, Binless counts the number of reads in each
dangling category at each cut site intersection, which are later
used as input to the normalization procedure. In other words, the
number of dangling reads is used to compute the genomic biases
at cut-site level.

Discussion
A number of problems arise in binned interaction detection as
the significance of interactions depends on the chosen resolution.
In fact, loops are usually called at 1–10 kb, TADs at 50–100 kb
and compartments at 100–1000 kb resolution18. Unfortunately,
the best resolution at which to call a particular genome structural
feature is still an open question, and may also depend on
data quantity/quality. Importantly, at typical sequencing depth
for Hi-C experiments, the number of common called interactions
between replicates is low18. To address these limitations, the
resolution of a Hi-C matrix can be chosen based on the distance
between two loci of interest5. Indeed, it is expected that higher
resolution can be reached close to the matrix diagonal, because
sequencing depth is what dictates where to fix the tradeoff
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replicates. The SCC was computed on each chromosome, for each resolution, normalization method, and dataset. Boxplots show the distribution of SCC
values across a large number of comparisons (see methods for details, Sup. Table panel 3 for comparisons and panel 8 for sample sizes)
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between high resolution and genomic distance. With Binless, it is
now possible to perform normalization, interaction, and differ-
ence detection entirely without specifying a Hi-C matrix resolu-
tion. Internally, Binless adapts the “resolution” of the detected
features depending on their position in the Hi-C matrix (Sup-
plementary Fig. 2A), which avoids the tradeoff between resolution
and genomic distance. In fact, the fused lasso algorithm used for
that purpose ensures that, at each position, the local bin size is
neither too big, which could lead to averaging out some features,
nor too small, which would increase the noise. For example,
Binless is able to highlight both loops and TADs within the same
binless matrix (Supplementary Fig. 8).

Here, we prove that it is possible and advantageous to nor-
malize Hi-C data in a resolution-agnostic way, using binless
matrices. However, how can the quality of a dataset be assessed?
Binless matrices have a base resolution, which can be seen like the
pixel size of a detector. These pixels are then fused when their
signal contributions are similar. Contrary to HiCRep, we employ
a weighted version of the fused lasso algorithm. This choice is
important, because it allows the fusion effect to be weak where
most of the reads accumulate, but to be strong where no data is
present. The size of patches formed by the fused lasso algorithm
therefore varies substantially (Supplementary Fig. 2). Close to the
main diagonal, where most of the pair-wise interactions map, the

matrix is enriched in small patches (or higher-resolution features
such as loops). Far away, the data is scarce and patches become
larger (or lower-resolution for TADs and compartmentalization).
Thus, the effective resolution of binless signal matrices depends
on the distance from the diagonal, and therefore adapts to the
quantity and quality of data. In fact, the resulting patches have
an approximately constant read density, independent of patch
size (Supplementary Fig. 2D). We therefore propose to use this
average read density per patch as a proxy for dataset quality.

Binless signal matrices result after suppression of diagonal
decay and the compensation for genomic biases in a Hi-C raw
interaction matrix. To accomplish this, Binless performs two
main steps (Methods). First, an un-thresholded signal matrix is
estimated (in logarithmic scale) along with its fusion strength
parameter, λ2. And second, the algorithm estimates a significance
threshold, λ1, which is used to obtain the final signal matrix by a
so-called soft-thresholding operation. In this case, soft-
thresholding corresponds to setting to zero all regions whose
log-signal is lower than λ1, and subtracting λ1 from the remaining
values. Therefore, when there is not enough evidence for signal in
a given region, the binless signal matrix will be zero (Supple-
mentary Fig. 5). When evidence is strong enough, the reported
signal represents by how much, at minimum, local contacts are
enriched with respect to what would be expected by local genomic
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biases and the average interaction frequency at that distance.
Deciding on what is noise and what is signal is the role of the
Generalized Additive Model, and is reflected by the value of the λ2
parameter in signal detection (and similar parameters in the
genomic and decay biases). As shown also in HiCRep33, when λ2
is large, fusion is strong, and patches become large, even close to
the diagonal. When λ2 is small, fusion is weak and the matrix
becomes less smooth and closer to the raw data. Binless spends a
large amount of time to determine this parameter, employing
exact solutions for the biases, and the Bayesian information cri-
terion (BIC) for the signal and difference estimates. These criteria
consider the need to fit the data on one hand, and the need for
smoothness on another hand. The final value of λ2 will depend on
both the quantity of data, and the estimated variability it contains.
We should note that Binless does not “pick” loops. Since Binless
is meant to be a locus-specific method, manual inspection is still
required. If loop detection is required, the binless signal or dif-
ference matrix can be used to define loops at a given user defined
threshold.

Here, we have introduced a statistically sound method to
compute normalized binless interaction matrices derived from
Hi-C raw datasets. The method stems from an alternate repre-
sentation of Hi-C datasets, which in turn results in a modified
classification of interactions between loci in a genome. Binless has
been implemented in a R package and can be used in computa-
tional settings with high memory at the chromosome level. We
have shown that this method is able to increase the reproduci-
bility of Hi-C experiments and is able to more reliably detect
statistically significant interactions in real-scenario experiments.
Binless can be used to detect several structural features in the
genome ranging from few kilobases (i.e., loops between two loci)
to megabases (i.e., TADs or compartments). Finally, using the

same statistical approach, Binless is able to detect differential
interactions between two or more experimental datasets. Overall,
we trust Binless is complementary to existing normalization
methods for 3C-based experiments.

Methods
Base-resolution view of Hi-C data. Paired-end reads are processed using the
TADbit pipeline14. The input to Binless is the reads intersection file, which con-
tains the genomic location, length, and strand for both ends of each read, as well as
the coordinates of the closest upstream and downstream cut sites. It is assumed
that the first read is always upstream of the second read. Duplicate reads are
removed when reading the inputs (Supplementary Fig. 1a). At this step, the user
should provide sonication fragment length and dangling end positions, which are
also obtained by Binless from the reads intersection input file. These reads are then
classified as shown schematically in Fig. 6 (see also Supplementary Fig. 10 for a
decision tree). We define several categories. A left or right “dangling read” is a
DNA molecule that starts or ends, respectively, on a cut-site, with both ends
mapping on opposite strands. A “rejoined read”, which has likely been re-ligated,
spans across a restriction site. A “self-circle” corresponds to ligation of the two ends
of a fragment. “Random reads” align close to the diagonal and on the same frag-
ment, and point towards the diagonal in the base-resolution representation. They
are thought to be genomic DNA, and are not specific to the Hi-C experiment. Most
importantly, there are four “contact types”, depending on which quadrant of the
intersection between two restriction site they can be found in. “Up” and “Down”
contacts are such that both read ends align upstream and downstream, respectively,
of the closest restriction fragment. “Close” and “Far” contacts are closer or further,
respectively, from the diagonal than the intersection of their cut sites. All contact
types must point towards the restriction intersection in the base-resolution
representation. Note that for neighboring cut sites, self-circles replace the close
contact category. Finally, reads that cannot be classified (because they are too far
from a restriction site, or because their direction does not match) are put in the
“other” category.

Exact model. The negative binomial regression we employ has likelihoods of the
following form (see Supplementary Methods for a complete overview)

di � NB μi; α
� � ð1Þ
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number of difference calculations

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09907-2

6 NATURE COMMUNICATIONS |         (2019) 10:1938 | https://doi.org/10.1038/s41467-019-09907-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


cij � NB μij; α
� �

ð2Þ

where di is the number of dangling or rejoined reads at cut site i and cij is the
number of reads in one of the four contact categories, observed between cut sites i
and j. µi and µij are the respective means, to be estimated, and α the dispersion
parameter of the negative binomial. The means µij are parametrized using three
“background” splines ι, ρ, and f, and one “signal” term s, as we now explain. The
efficiency of detection of a particular contact has been shown to be decomposable
into genome-specific biases for each of the two reads in a read pair7. For reads
aligning to the left (respectively right) of a cut site i, the number of contacts
involving i are therefore made proportional to their genomic bias ιi (respectively
ρi). ι and ρ are modeled using p-splines24,28,34. The polymer nature of chromatin is
thought to make Hi-C contact probabilities decrease with the genomic distance
between two cut sites. Therefore, the number of contacts involving cut sites i and j
are made proportional to the decay bias fij, which is forced to decrease with the
genomic distance between i and j. We use a smooth constrained additive model35

for f. When the ligation efficiency for a cut-site decreases, one can expect a
depletion in the number of contacts and an enrichment of dangling ends. There-
fore, dangling ends are made to follow the opposite trend of the counts, and are

biased by ι for left-dangling and ρ by right-dangling ends. Rejoined ends follow the
(geometric) average bias at this cut site. Finally, a sparse 2D term sij is meant to fit
the signal that departs significantly from the background modeled by the genomic
and decay biases. This term is modeled using the sparse 2D generalized fused lasso
on a triangle grid graph36.

Optimized Binless. Ideally, all parameters are optimized together. However only
small datasets (less than about 100 cut sites) can be normalized in this way. For
even the smallest Hi-C loci, it is necessary to model the contribution of cut-site
intersections with zero observed counts implicitly. We combine this implicit
representation with a fast coordinate descent algorithm. We refer to this imple-
mentation as “optimized Binless”. In a nutshell, instead of optimizing all para-
meters at once, we optimize parameters relevant to genomic biases, diagonal decay,
dispersion and signal (using gfl37) separately and iteratively. In each separate
optimization, we compute the biases not using the individual counts, but using
weighted average log-counts. This grouping by rows, counter diagonals or signal
bins is what allows the computation to be orders of magnitude faster. Grouping is
made possible by a repeated normal approximation to the log likelihood of the
counts. This method, known as Iteratively Re-weighted Least Squares (IRLS) is very
common in all types of generalized regressions38. Note that IRLS converges to the
maximum posterior estimate. Therefore, the only approximation in this model is
the implicit representation of zeros, which is similar to a mean field approximation
for the Ising model.

The estimation of the dispersion is done differently. For a number of matrix
rows (default 100), the maximum likelihood estimate of the dispersion is estimated
on all counts (including zeros), dangling and rejoined reads according to the exact
model. The final dispersion estimate is their median. In optimized Binless, the
dispersion, biases, decay and corresponding stiffness penalties are optimized first,
holding the signal fixed to zero. Upon convergence, the dispersion, biases and
signal are then fitted, with a fixed fusion penalty (λ2= 2.5 by default) for the signal.

Upon convergence, two options are provided. If one seeks to obtain binless
signal matrices, they can be estimated along with their fusion (λ2) and threshold
penalty (λ1). If one seeks differences with respect to a reference matrix, or a group
of matrices (e.g. grouped by condition), an extended model is proposed to compute
it (Supplementary Materials). In this model, all matrices (or groups) have the same
mean than the reference up to a difference term. Fused lasso is then applied on this
difference term. By incorporating the difference within the probabilistic
framework, we are able to maintain an accurate weighting and control the
contributions of datasets relative to each other. This step is key to obtain difference
matrices that can be interpreted in terms of “fold change”, like the signal matrices.

Fast Binless. Optimized Binless is suited only for individual loci (0–3Mb for 4-
cutters) in which high precision is required. For chromosome-wide analyses as
presented here, a tradeoff is proposed as follows. Data is binned at the chosen base
resolution, and an IRLS scheme estimates the diagonal decay and biases along each
binned row until convergence. To speed up the calculation and lower the memory
footprint, an option is provided to limit the normalization to a certain interaction
distance. Then, the signal and biases are estimated until convergence. The dis-
persion (α), fusion (λ2), and threshold penalty (λ1) must be supplied to the call. Fast
binless makes it possible to normalize whole chromosomes at 5 kb base resolution
in a few hours (Supplementary Fig. 12).

Estimation of parameters for fast binless normalization. A procedure is pro-
vided to generate sensible values for the dispersion (α), fusion (λ2), and threshold
penalty (λ1) parameters (see supplementary methods). In a nutshell, several loci are
selected from the chromosome to be normalized. For signal detection, this selection
is based on the standard deviation of their directionality index (DI)16 (Supple-
mentary Fig. 13); for difference detection, it is based on a fast binless estimate of the
difference computed at a fixed value of λ2. Selected loci are subsequently nor-
malized independently with optimized Binless. These normalizations are used to
propose a set of parameters that will produce a similar binless signal or difference
matrix with fast Binless (Supplementary Fig. 14).

Available outputs. Once several datasets have been normalized together, a number
of matrices can be produced at any resolution (Supplementary Fig. 15). Decay and
genomic bias matrices correspond to the estimated background terms, averaged
over bins at the specified resolution. The normalized matrix corresponds to cor-
recting the observed data by all genomic biases. It comes with corresponding error
estimates, which are provided using the IRLS approximation (Supplementary
Methods).

Binless signal matrices are the signal term obtained during normalization
(Fig. 1). They can also be recomputed at a different base resolution afterwards.
Their unit is a minimum fold change with respect to the background. Because
sparsity was enforced while estimating the signal, the resulting matrix is nonzero
when the signal is statistically significant. Should a more stringent significance
threshold be applied afterwards, it must be applied on the binless signal matrix.

The binless signal matrix can be shown with an added decay bias. Such a
matrix, which we simply call binless matrix, is visually closer to the raw data (Fig. 1
and Supplementary Fig. 9), but its unit is a fold change with respect to a
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background without diagonal decay. Finally, binless differences between datasets
can be computed (Fig. 5 and Supplementary Fig. 9), and their unit is a minimum
fold change between two datasets. All aforementioned matrices can be grouped
(e.g. by condition) to improve the detection sensitivity.

Recommendations. In designing Binless, we attempted to minimize the number of
free parameters. Yet, some of them are left to the choice of the user. As a general
rule, their choice should not impact the resulting normalization. For example, the
number of iterations should be large enough to reach convergence of the algorithm,
which can be monitored using diagnostic plots Binless provides. Most importantly,
the number of basis functions per kilobase controls the maximum wiggliness of the
genomic biases. If it is large, the computational burden is high and the normal-
ization can, for very large datasets, become unstable. If it is too small, the genomic
biases will not be estimated properly. We suggest to start with a value of 50.
Similarly, for binless detection, the base resolution should be as small as the
smallest feature one hopes to detect. Out of computational considerations, we
recommend a base resolution of 5 kb for 4-cutters, and 20 kb for 6-cutters or low-
coverage 4-cutters. It is important to keep in mind that the base resolution gives the
size of the smallest feature one hopes to detect. Lowering it might be attractive at
first, but optimization is 4 times more difficult every time the base resolution is
divided by 2. Once normalized, the data can be re-binned if necessary.

Data processing. We processed all datasets presented in this paper using the
TADbit pipeline14 and Binless 0.13.0 (Supplementary Data 1, first two panels).
Whole-chromosome normalizations and differences were performed by first
determining the proper parameters on submatrices along the diagonal, and then
using fast Binless with these parameters on the whole chromosome (see above).
Binless matrices were obtained at their nominal base resolution, and if necessary
re-binned at a lower resolution. For subsampling of the data in Supplementary
Figs. 4 and 5, we took a subset of all available reads by drawing the read count from
a binomial distribution (coin tossing). Each dataset was then normalized
independently.

Raw matrices corresponded to reporting the number of observed reads per bin
(5, 20, or 100 kb resolution) after filtering with TADBit. ICE matrices corresponded
to applying the iterative correction algorithm7 on genome-wide raw matrices at the
specified resolution. Vanilla matrices were obtained after the first iteration of ICE,
either on a whole-genome matrix (vanilla full) or a matrix per chromosome
(vanilla chr). OneD matrices were computed according to the algorithm of Vidal
et al.19 oneD, ICE, and vanilla matrices were computed using the dryhic
0.0.0.9000 R package19. HiCRep and HiCRep z-score matrices30 (e.g. distance-
normalized) were computed using the efficient high-resolution implementation
based on gfl37, kindly provided by the authors of HiC-bench and by following the

optimization method suggested in the paper30, with slight modifications. For each
chromosome, the ICE-corrected matrix was used as input, and the algorithm
applied with 11 different values of the smoothing penalty λ. At 5 kb resolution, 11
values were chosen equally-spaced between 0 and 1. At 20 kb, they were chosen
between 0 and 10. At 100 kb, between 0 and 100. Then, the stratified correlation
coefficient (SCC)29 was computed on matrices with successive values of λ. A one-
tailed Wilcoxon test was computed on the SCC values of all chromosomes for a
given pair of successive λ values. The optimal λ is the largest one for which the p-
value is <0.001. DiffHic enrichment matrices26 were obtained as the raw
chromosome-wide matrices converted to ContactMatrix format, using a count
filter of 1 and not storing neither zeros nor NAs. Enriched pairs were called using a
flank width of 3. The R package diffhic 1.10.0 was used. Difference matrices are
obtained as follows: Raw chromosome-wide matrices were converted to
ContactMatrix format as described above, and the two datasets merged together.
Non-linear normalization using LOESS was performed. In absence of replication,
we performed a simple GLM fit with a dispersion of 0.01, followed by a likelihood
ratio test. The difference matrix reported the minus log10 Benjamini-Hochberg-
adjusted p-value. Shaman score matrices15 were converted from mapped and de-
duplicated reads obtained by TADbit to Shaman input (tab-separated
chromosome, start, end for read 1, same for read 2, and an extra undocumented
column of ones). Individual datasets were then shuffled and scored using default
options. The R packages Shaman 2.0 and misha 4.0.2 were used. Shaman difference
matrices were computed by subtracting the score matrices.

Benchmark: comparisons. We normalized all 41 Hi-C datasets presented in a
recent Hi-C benchmark18 (Supplementary Data 1) with several different tools,
including Binless. We subjected all datasets to pairwise comparisons, by chromo-
some, for a number of normalization methods. Reproducibility was assessed using
one of four metrics, as done in ref. 19. First, the stratum-adjusted correlation
coefficient (SCC)29 was computed with a distance cutoff of 5 Mb (as in the original
paper). Second, the reproducibility index39 was computed on the 15 first compo-
nents. Third, the Pearson correlation was computed between matrices whose value
at (i,j) is the original value divided by the average of all values at the same genomic
distance than (i,j), with a distance cutoff of 5 Mb. Fourth, the Spearman correlation
was computed between matrices with a distance cutoff of 5 Mb.

Three classes of pairwise comparisons were formed between datasets
(Supplementary Data 1, panels 3–5): biological replicates, technical replicates, and
same cell type but different enzyme. Matrices subject to these comparisons all
contain a strong diagonal, and are not distance-normalized. The methods
compared were: raw data, one iteration of ICE (i.e., vanilla) applied to a
chromosome, vanilla on a whole genome, ICE on a whole genome, oneD on a
whole genome, HiCRep by chromosome, and Binless by chromosome. For Binless,
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normalization was performed at 5 kb or 20 kb base resolution, and matrices re-
binned to lower resolutions (20 kb and 100 kb). Other matrices were produced by
directly performing the corresponding normalizations at 5 kb, 20 kb, and 100 kb
resolution. Results are shown in Fig. 2, Supplementary Figs. 6 and 8. Sample sizes
are reported in Supplementary Data panel 8. When shown, boxplots report the
median (center line), first and third quartile (lower resp. upper hinges) and largest
(smallest) value no further than 1.5 × IQR (interquartile range) from the hinge
(upper resp. lower whisker).

Benchmark: interaction detection. A list of more than 2800 true positive or true
negative interactions obtained by 3C, 5C, ChIA-PET, and FISH was compiled in a
recent benchmark18 and was kindly provided by the authors (Supplementary Data
panel 9 reports the number of annotated interactions). The true positive (true
negative) rate was computed by intersecting available true positive (resp. true
negative) interactions in that cell type with the top 0.1% of interactions in a given
matrix. The methods compared were: raw data, diffHic enrichment, Shaman score
HiCRep z-score and Binless signal matrices. All these matrices, except the raw data,
are distance-normalized. As previously, resolutions were 5 kb for 4-cutter datasets
(Supplementary Data 1), 20 kb and 100 kb for all. Results are shown in Fig. 3,
Supplementary Figs. 7 and 8.

Benchmark: difference detection. Pairs of datasets were tested for significant
differences. Two groups of datasets were formed (Supplementary Data 1, panel-
s 6 and 7): comparisons between technical replicates, and comparisons between
different cell types. We compared diffHic, Shaman and Binless by reporting
the sum of all difference scores on each matrix. For diffHic difference matrices,
we use all the minus log10 Benjamini Hochberg p-values if they satisfy p < 0.05.
For Shaman difference matrices, we use all absolute differences which are
larger than 30. For Binless significant difference matrices, we use all nonzero
absolute log10 differences. Results are shown in Fig. 4 and Supplementary Fig. 9.
Total number of difference computations reported in Supplementary Data 1,
panel 10.

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are available within the article
and its Supplementary Information files or from the corresponding authors upon
reasonable request. The Hi-C experimental data used in this study is available publicly,
and corresponding SRA entries listed in Supplementary Data panel 1. Processed data is
available from the authors upon request. A reporting summary for this Article is available
as a Supplementary Information file.

Code availability
Binless is an R/C++ package using gfl37 and is available at https://github.com/
3DGenomes/binless. We used Stan33 (https://mc-stan.org) to prototype the statistical
model.
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